é){v% diagnostics

Article

Prognostic Significance of AI-Enhanced ECG for Emergency
Department Patients

Yu-Te Su 1, Sy-Jou Chen 200, Chin Lin 345600, Chin-Sheng Lin 57

check for
updates
Academic Editors: Dania Cioni and

Hsin-Yao Wang

Received: 2 June 2025
Revised: 22 July 2025
Accepted: 23 July 2025
Published: 25 July 2025

Citation: Su, Y.-T.; Chen, S.-J.;

Lin, C.; Lin, C.-S.; Hu, H.-F. Prognostic
Significance of Al-Enhanced ECG for
Emergency Department Patients.
Diagnostics 2025, 15, 1874.

https:/ /doi.org/10.3390/
diagnostics15151874

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Hsiao-Feng Hu 1/8:9*

Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical University,
Taipei 11490, Taiwan; m42kénj@gmail.com (Y.-T.S.); syjou.chen@gmail.com (S.-J.C.)

Graduate Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical
University, New Taipei City 235, Taiwan

3 School of Public Health, National Defense Medical University, Taipei 11490, Taiwan; xup6fup0629@gmail.com
Department of Artificial Intelligence and Internet of Things, Tri-Service General Hospital, National Defense
Medical University, Taipei 11490, Taiwan

Medical Technology Education Center, School of Medicine, National Defense Medical University,

Taipei 11490, Taiwan; littlelincs@gmail.com

6 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical University,

Taipei 11490, Taiwan

Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense
Medical University, Taipei 11490, Taiwan

Tri-Service General Hospital Penghu Branch, National Defense Medical University, Penghu 880026, Taiwan
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan

*  Correspondence: hsiaofeng0@gmail.com; Tel.: +886-6-9211-116

Abstract

Background/Objectives: Artificial intelligence (Al)-enabled electrocardiogram (ECG) anal-
ysis may assist in objective and reproducible risk stratification. However, the prognostic
utility of serial ECGs, particularly the follow-up ECG prior to discharge, has not been ex-
tensively studied. This study aimed to evaluate whether dynamic changes in Al-predicted
ECG risk scores could enhance prediction of post-discharge outcomes. Methods: This
retrospective cohort study included 11,508 ED visits from a single medical center where
patients underwent two ECGs and were directly discharged. We stratified the mortality
risk of patients as low risk, medium risk, and high risk based on the first and follow-up
ECG prior to discharge using Al-enabled ECG models. The Area Under the Curve (AUC)
was calculated for the predictive performance of the two ECGs. Kaplan-Meier (KM) curves
were used for 90-day mortality analysis, and the Cox proportional hazards model was
utilized to compare the risk of death across categories. Results: The Al-enabled ECG risk
prediction model, based on the initial and follow-up ECGs prior to discharge, indicated
risk transitions among different groups. The AUC for mortality risk was 78.6% for the first
ECG and 83.3% for the follow-up ECG. KM curves revealed a significant increase in 90-day
mortality for patients transitioning from low to medium/high risk upon discharge (Hazard
Ratio: 6.01; Confidence Interval: 1.70-21.27). Conclusions: Al-enabled ECGs obtained
prior to discharge provide superior mortality risk stratification for ED patients compared
to initial ECGs. Patients classified as medium- or high-risk at discharge require careful
consideration, whereas those at low risk can generally be discharged safely. Although
AI-ECG alone does not replace comprehensive risk assessment, it offers a practical tool to
support clinical judgment, particularly in the dynamic ED environment, by aiding safer
discharge decisions.
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1. Introduction

Efficient patient disposition is an important challenge in emergency departments (EDs),
where clinicians must balance the need for prompt care with the imperative to accurately
assess risk. Despite thorough assessment and treatment, patients discharged from the ED
may experience adverse outcomes that were not anticipated at the time of discharge. A
previous study found that the overall 72 h revisit rate to the ED was 5.47% [1]. Furthermore,
missed and delayed diagnoses in the ED can lead to serious adverse outcomes, including
death, with stroke, myocardial infarction, and aortic aneurysm/dissection among the most
commonly overlooked [2]. These statistics highlight the challenge of accurately identifying
patients at elevated risk during the disposition process and underscore the need for more
effective risk stratification tools.

The discharge process from the ED involves a complex interplay among patient
factors, clinician judgment, and system constraints [3]. Traditional diagnostic tools and
risk scores, while valuable, ultimately rely on clinician interpretation and can sometimes
fail to capture a patient’s true clinical risk, potentially resulting in missed diagnoses or
inappropriate disposition [4]. This limitation is particularly evident in the interpretation of
ECGs, which have become fundamental to risk assessment in the ED, especially for patients
with cardiovascular history or presenting with symptoms such as chest pain or dyspnea. In
addition to conventional ECG interpretation, heart rate variability (HRV) measures such
as the standard deviation of normal-to-normal intervals (SDNN) and very low frequency
(VLF) have been established as predictors [5]. However, HRV captures limited aspects of
cardiac dynamics and requires preprocessing, whereas deep learning models can directly
analyze raw waveforms to extract richer prognostic information. This highlights the need
for more objective and reliable methods to enhance ECG analysis and improve patient
risk stratification.

Artificial intelligence (AI) has emerged as a promising solution to these challenges
by offering capabilities that extend beyond traditional clinical assessment. Advanced Al
algorithms can detect subtle patterns and abnormalities in ECG data that might escape
human observation, enabling prediction of various cardiovascular conditions including
heart failure, atrial fibrillation, and overall mortality risk [6-8]. Recent studies have demon-
strated the practical application of these capabilities, showing that AI-ECG algorithms can
effectively predict left ventricular systolic dysfunction and stratify in-hospital mortality
risk for intensive care patients [9,10]. Furthermore, an Al-enabled ECG alert system has
been shown to significantly improve patient outcomes, with one study reporting a 31%
reduction in the relative risk of 90-day all-cause mortality compared to standard care based
on a single ECG analysis [11]. These findings suggest that Al-enhanced ECG interpretation
could provide a more accurate, data-driven foundation for clinical decision-making in
the ED.

In the context of high-acuity EDs, where rapid and accurate evaluation is essential,
Al-enhanced ECG interpretation could be particularly valuable. Current ED practices
often involve performing multiple ECGs and serial laboratory tests to evaluate higher-
risk patients, especially those presenting with cardiopulmonary symptoms. However, no
studies have investigated the comparative prognostic value of initial versus follow-up
ECGs during an ED visit, nor how Al-enhanced interpretation might optimize this process.
This study aims to address this gap by assessing the prognostic value of changes in Al-
enabled ECG risk stratification for ED patients. We hypothesize that the predictive accuracy
of follow-up ECGs will be superior to that of initial ECGs, potentially offering a more
reliable basis for disposition decisions and improving patient outcomes.
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2. Materials and Methods
2.1. Study Design and Patients

This retrospective cohort study was conducted in the ED of Tri-Service General Hospital
(TSGH) from July 2012 to December 2022. The study included patients who underwent at
least two ECG examinations during their ED visit. The exclusion criteria were as follows:
patients with a time interval exceeding 1 h from admission to the first ECG, as this interval
may not accurately represent the initial condition; patients with a time interval of less than
1 h between the first and second ECGs, as this short interval may not allow for significant
physiological changes to manifest; patients with a time interval exceeding 2 h from the second
ECG to discharge, as this may not accurately reflect the condition at discharge; patients with
a total ED stay exceeding 48 h, as this may involve more complex medical conditions and
treatments; and patients who died during their ED visit. Patients who met inclusion criteria
and were directly discharged alive formed the final study cohort. This study was approved by
the Institutional Review Board of TSGH, Taipei, Taiwan (IRB No. C202105049), which waived
the requirement for informed consent due to the retrospective nature of the research.

2.2. ECG Acquisition and Preprocessing

All electrocardiograms were acquired as standard 12-lead 10 s recordings using a
digital ECG system with a sampling frequency of 500 Hz and an amplitude resolution of
5 microvolts per bit. The raw ECG waveforms underwent preprocessing that included
bandpass filtering between 0.5 and 40 Hz to reduce baseline wander and high-frequency
noise, followed by normalization to zero mean and unit variance across each lead. Each
ECG was segmented into uniform 10 s matrices containing 12 leads, forming 5000 sam-
ples. In addition to waveform-level data, structured ECG features were extracted from
machine-generated ECG interpretations using a standardized diagnostic classification sys-
tem implemented in the Philips ECG platform, as described in our previous study [12].
These included 31 diagnostic pattern classes (e.g., atrial fibrillation, ventricular prema-
ture complexes, QT prolongation) and 8 continuous ECG measurements (e.g., heart rate,
PR/QRS/QTc intervals, T/QRS axes). These features were used in secondary analyses to
evaluate their potential association with AI-ECG risk predictions.

2.3. AI Model Architecture and Training

We developed a deep learning model based on an 82-layer convolutional neural
network (CNN) architecture adapted from our previous studies [12], which originally
demonstrated robust prognostic performance in large-scale ECG datasets. Briefly, the
network incorporated multiple convolutional blocks with ReLU activations and batch
normalization, followed by fully connected layers and a final sigmoid output neuron
generating continuous probability scores. The dataset was partitioned by patient into
development, tuning, and internal validation subsets to prevent cross-contamination.
Model training was performed using the Adam optimizer (initial learning rate 0.001), a
batch size of 32, L2 regularization, oversampling to address class imbalance, and early
stopping based on validation loss. Model development and inference were implemented in
Python 3.8 (TensorFlow and Keras). The model was trained on more than 450,000 ECGs
with all-cause mortality as the primary outcome label, using survival data that included
censored events. Its predictive performance was evaluated in an external validation dataset,
achieving an Area Under the Curve (AUC) of 0.886 for 90-day mortality prediction. We
applied gradient boosting models (XGBoost) using structured ECG features and patient
demographics to estimate their relative importance in predicting Al-derived risk scores,
as described in our earlier study [11]. A representative visual example of the Al model’s
output and interpretability interface is presented in Figure S1 (Supplementary Materials).
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2.4. Al-Enabled ECG Risk Stratification

For each ECG, the model generated a continuous probability score predicting 90-day
all-cause mortality, which was transformed into percentile ranks relative to a hospital-
wide reference population and categorized into three risk groups: low (<75th percentile),
medium (75th-94th percentile), and high (>95th percentile). For each patient, both the
initial ECG at ED presentation and the follow-up ECG prior to discharge were analyzed.
To assess temporal changes in risk classification, four transition groups were defined: low-
to-low, medium/high-to-low, low-to-medium /high, and medium /high-to-medium/high.
Patient survival status was determined using electronic medical records (EMRs). Although
deaths occurring outside our institution may not have been captured, this limitation was
considered minimal because only 0.16% of readmissions occurred at external hospitals
during the reference period [13].

2.5. Statistical Analysis

The predictive performance of the Al-enabled ECG model was assessed by calculating
the AUC. Cumulative survival probabilities within 90 days were estimated using Kaplan—
Meier methods and compared across groups using the log-rank test. Associations between
risk categories and all-cause mortality were assessed using Cox proportional hazards
regression, and hazard ratios with 95% confidence intervals were reported. All statistical
analyses were performed using R version 3.4.4, and a two-sided p-value less than 0.05 was
considered statistically significant.

3. Results
3.1. Study Flowchart and Al-Enabled ECG Risk Categorization

There were 37,027 patients who underwent at least two ECG examinations during the
study period, and 21,866 patients were excluded. A total of 15,161 patients departed from
the ED, with 11,508 patients discharged directly from the ED included in the final analysis.
The Al-enabled ECG risk prediction model, based on the initial and follow-up ECGs prior
to discharge, indicated transitions among different risk groups, as illustrated in Figure 1.
Of note, numbers in the medium- and high-risk groups were decreased from 2665 and 643
to 2229 and 342 by subsequent Al-enabled ECG risk classification.

Individuals with 2 ECGs in ED (n = 37,027) |

Exclusion :

1. Admission to first ECG more than 1 hours (7= 1450)
2. First ECG to last ECG less than 1 hours (7= 1491)

3. Last ECG to departure more than 2 hours (n = 16,458)
4. Admission to departure more than 48 hours (7= 67)
5. Patient death (n = 2400)

| Departure from ED (7= 15,161) |

[

| Discharged patients (n = 11,508) |

Predicted risk by first ECG using AI-ECG 1

I

Low risk
(n=8210)

|

Medium risk High risk
(n=2665) (n=1643)

Predicted risk by last ECG using AI-ECG 2

l

| | | l |

Low risk
(n=7527)

Medium risk
(n=650)

High risk Low risk Medium risk High risk Low risk Medium risk High risk
(n=33) (n=1223) (n=1310) n=122) (n=187) (n=269) (n=187)

Figure 1. Case selection flowchart.
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3.2. Baseline Characteristics of Patients

The demographic characteristics of these 11,508 patients are presented in Table 1. The
mean age of the population was 63.6 £ 16.6 years, with males accounting for 53.6%. Level
3 triage accounted for the majority of cases (56.0%) in the ED. The mean Al-enabled ECG
mortality risk score was 68.8 & 24.1 for the first ECG, and 65.7 & 24.1 for the subsequent
ECG prior to discharge. The average duration from admission to discharge was 5.5 = 4.4 h.
Approximately 0.9% of patients experienced mortality during the 90-day follow-up period.
The characteristics of the three risk categories predicted by Al-enabled ECG upon admission
to the ED are detailed in Table 2. Significant differences were observed across the risk groups
in age, sex distribution, vital signs, ECG-derived risk scores, triage levels, and clinical
outcomes. Patients in the high-risk group were generally older (mean age: 69.98 years) and
exhibited more severe triage classifications, with 10.3% assigned to level 1 acuity, compared
to only 1.5% in the low-risk group. The second ECG mortality risk score, obtained prior
to discharge, remained elevated in the high-risk cohort (mean: 87.4). The 90-day all-cause
mortality rate increased proportionally with risk category: 0.3% in the low-risk group, 1.7%
in the medium-risk group, and 3.9% in the high-risk group (p < 0.001). The characteristics
of different risk transitions are presented in Appendix A Tables A1-AS3.

Table 1. Baseline demographic and clinical characteristics.

Variables Total (n = 11,508)
Age, mean + SD 63.64 £ 16.63
Gender, 1 (%)

Male 6172 (53.6%)

Female 5336 (46.4%)
BMI, mean + SD 24.86 4+ 4.09
Triage level, n (%)

1 324 (2.8%)

2 4359 (37.9%)

3 6441 (56.0%)

4 383 (3.3%)

5 1 (0.0%)
SBP, mean + SD 142.30 + 27.19
DBP, mean =+ SD 79.78 +16.70
PULSE, mean + SD 85.00 4+ 24.28
SpO;, mean + SD 98.28 + 14.89
1st ECG mortality risk score, mean & SD 68.84 £ 24.06
2nd ECG mortality risk score, mean + SD 65.73 £ 24.15
Admission to discharge(hr.), mean £ SD 5.47 + 4.39
Event [all-cause mortality within 90 days], n (%)

Alive 10,248 (99.1%)

Death 88 (0.9%)

SD = standard deviation; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure;
SpO, = peripheral capillary oxygen saturation.

Table 2. Characteristics of 3 categories of risk group predicted by Al-enabled ECG upon admission to
the ED.

Variables Low Risk Medium Risk High Risk p-Value
Number, 1 (%) 8210 (71.3%) 2655 (23.1%) 643 (5.6%) <0.001
Age, mean + SD 60.59 £+ 16.13 71.56 £ 15.09 69.98 + 16.40 <0.001
Gender, n (%) <0.001
Male 4535 (55.2%) 1302 (49.0%) 335 (52.1%)
Female 3675 (44.8%) 1353 (51.0%) 308 (47.9%)
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Table 2. Cont.

Variables Low Risk Medium Risk High Risk p-Value
BMI, mean £ SD 25.05 £+ 4.04 24.40 £ 4.09 24.07 £ 4.52 <0.001
Triage level, n (%) <0.001
1 126 (1.5%) 132 (5.0%) 66 (10.3%)
2 2828 (34.4%) 1176 (44.3%) 355 (55.2%)
3 4957 (60.4%) 1275 (48.0%) 209 (32.5%)
4 298 (3.6%) 72 (2.7%) 13 (2.0%)
5 1 (0.0%) 0(0.0%) 0(0.0%)
SBP, mean + SD 143.23 £+ 26.38 141.67 £ 28.90 132.54 £28.53  <0.001
DBP, mean =+ SD 80.74 + 15.97 77.14 £ 17.95 77.97 £ 19.18 <0.001
PULSE, mean =+ SD 81.50 £ 20.23 90.33 £ 27.67 108.21 £37.20  <0.001
SpO,, mean + SD 98.37 £9.92 98.18 £ 25.60 97.60 £ 3.23 0.429
1st ECG mortality risk score, mean 4= SD 59.26 & 22.04 91.39 £ 2.80 98.08 &= 1.03 <0.001
2nd ECG mortality risk score, mean £ SD 58.53 £ 23.35 82.75 +14.73 87.36 + 15.93 <0.001
Admission to discharge (hr.), mean &+ SD 5.30 4+ 4.30 5.79 +4.44 6.44 +5.16 <0.001
Events [all-cause mortality within 90 days], n (%) <0.001
Alive 7292 (99.7%) 2395 (98.3%) 561 (96.1%)
Death 24 (0.3%) 41 (1.7%) 23 (3.9%)
SD = standard deviation; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure;
SpO, = peripheral capillary oxygen saturation.
3.3. Al-Enabled ECG Risk Prediction
Figure 2 illustrates the receiver operating characteristic (ROC) curves of the ECG
prediction models of all-cause mortality within 90 days, which demonstrate that the AUC
for the first and follow-up ECGs prior to discharge were 78.6% and 83.3%, respectively. The
positive predictive values were 2.1% and 2.8%, respectively, while the negative predictive
values were both 99.7%. The follow-up ECG indicated better predictive ability compared
to the initial ECG.
AI-ECG 1 E
Prediction by first ECGs Prediction by last ECGs
0.75 0.75 O
goso 0.786 ;gm
3 Sens. 72.7% 3
Spec. 711.2%
PPV 2.1%
NPV 99.7%
02)0 0. '25 Spe()c'fl)f?c“y 0. '75 1 bO OE)O 0.25 Spe()c'?f?cuy 0. '75 1 bO

Figure 2. ROC curves of Al-enhanced ECG for predicting all-cause mortality within 90 days. The
operating point was selected based on the maximum of Youden’s index in the tuning set and was

presented using a circle mark.
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3.4. Mortality Risk of AI-Enabled ECG Categorical Changes

Cumulative death estimates for the four risk categories, based on risk scores generated
by the Al model from the two ECGs, are shown as Kaplan-Meier curves in Figure 3.
The incidences of 90-day mortality were 3.3% in the medium/high-to-medium /high risk
group and 1.3% in the low-to-medium/high group, which were significantly higher (HR:
12.44; CI: 4.62-33.49; HR: 6.01; CI: 1.70-21.27) compared to the reference group (0.2%).
Conversely, the incidence in the medium /high-to-low-risk group was 0.5%, which showed
no significant difference (HR: 1.91; CI: 0.45-8.14) compared to the reference group. Overall,
the concordance index (C-index) was 0.911.

10 C=index = 0.911 (0.885-0.937) Adjusted HR:
12.44 (4.62, 33.49)
8+ Low=to=-Medium/High 6.01(1.70, 21.27)
= Medium/High-to-Low 1.91 (0.45, 8.14)
@
g 6= Low-to-Low Reference
B
(5]
1=
s
B 4.
=}
E
= |
O
2‘_
o4 :
0 30 80 90
Time in days

Number at risk/event rate (%)

¥

=
o
ra
i
-]
n

6689 GEET 220 GBTI
(0.0%) (0.0%) (0.2%) (0.2%)

Figure 3. Kaplan-Meier curves for all-cause mortality in the 4 categories of patients within 90 days.
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4. Discussion

This study demonstrated that follow-up ECGs prior to discharge, analyzed by an
Al-enhanced model, provided superior predictive accuracy for 90-day all-cause mortality
compared to the initial ECG obtained at ED arrival. Importantly, patients who were initially
classified as low-risk but transitioned to medium- or high-risk through follow-up ECGs
had significantly increased mortality, highlighting the dynamic nature of clinical risk and
the value of serial assessment.

The enhanced predictive accuracy of the follow-up ECG conducted prior to discharge
can be attributed to several key factors. Firstly, patients with unstable conditions presenting
at the ED may have masked signs due to rising catecholamine levels in acute stress, which
makes the initial ECG less reliable for risk prediction [14]. Secondly, a patient’s condition
may fluctuate or deteriorate progressively during their stay, and the initial ECG may
not capture these dynamic changes [15]. Thirdly, patients may become more stable after
appropriate management, which the follow-up ECG can capture more effectively than the
initial ECG. For instance, follow-up ECGs are often obtained after specific interventions in
the ED, such as treatments for paroxysmal supraventricular tachycardia or atrial fibrillation
with rapid ventricular response. These interventions stabilize the patient, allowing the
follow-up ECG to more accurately reflect their true clinical condition at the time of discharge.
The results of our study reveal that performing a follow-up ECG is more precise in risk
stratification, ensuring that patients receive a more accurate assessment prior to discharge.

Our findings suggest that patients classified as low-risk at discharge can generally be
safely sent home, whereas those in the medium/high-risk categories should be monitored
closely, particularly those who were initially classified as low-risk. Bounce-back admissions
and deaths within 7 days after ED discharge have been reported in approximately 2.6% and
0.05% of cases, respectively [16-18]. Clinical risk stratification tools, such as the HEART
(History, ECG, Age, Risk Factors, and Troponin) score and the EDACS (Emergency Depart-
ment Assessment of Chest Pain Score) are widely used to assess patients presenting with
chest pain and suspected of acute coronary syndrome (ACS). However, both HEART and
EDACS scores rely on discrete clinical and biochemical variables, which may not capture
the dynamic physiological changes that occur over time [19,20]. Dynamic assessment
for risk evaluation can better identify critical changes that impact clinical outcomes for
patients in the ED. For example, the biomarkers N-terminal pro-brain natriuretic peptide
and cardiac troponin require serial evaluations to track risk changes accurately, necessi-
tating prompt treatment [21-23]. While initial ECGs provide valuable information, they
may underestimate risk due to acute changes in a patient’s condition. Performing serial
ECGs during the ED stay allows for more precise and timely risk assessment, offering
a more accurate prediction of patient outcomes [24]. This approach reduces the risk of
underestimation and improves patient outcomes by ensuring that individuals who require
additional monitoring or intervention receive appropriate care.

In our study, of the 88 patients who died within the 90-day follow-up period, 27
(30.7%) deaths were attributed to pulmonary causes, 26 (29.5%) to malignancies, 13 (14.8%)
to cardiogenic causes, 9 (10.2%) to infectious etiologies, and 13 (14.8%) to other causes.
Notably, 9.1% of patients transitioned from the low-risk to the medium /high-risk group
between their initial and follow-up ECGs. Two patients who presented to the ED in out-
of-hospital cardiac arrest due to fatal hyperkalemia and severe gastrointestinal bleeding.
Of the deaths, forty-one were potentially preventable and were associated with conditions
such as ischemic heart disease, congestive heart failure, arrhythmias, chronic obstructive
pulmonary disease, and hyperkalemia. The average time to death following ED discharge
was 49.1 £ 21.6 days, with the shortest time being 12 days, indicating that these deaths
were likely influenced by both acute and subacute underlying issues. These findings
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highlight the important role of Al-enabled ECGs in predicting short-term mortality risks of
various etiologies, providing clinical support for timely referrals and follow-up treatments.
Therefore, the implementation of follow-up Al-enabled ECGs in the ED is recommended, as
it has the potential to enhance decision-making processes and optimize resource allocation.

Previous research has demonstrated the potential of Al-driven ECG models in accu-
rately predicting adverse outcomes, such as mortality and major cardiac events including
acute myocardial infarction, stroke, and heart failure [12,25]. ECGs are valuable for risk
stratification, and their integration with other diagnostic tools, such as chest X-rays, can
significantly enhance risk prediction in emergency settings [26,27]. In cases of acute my-
ocardial infarction, the prognostic importance of the initial ECG is well established [28].
However, studies have shown that dynamic ECG changes offer superior predictive value
for sudden cardiac death compared to baseline and static ECGs [29]. Additionally, dynamic
ECGs have been shown to predict the risk of heart failure hospitalization [30]. Al-enabled
ECGs in the ED significantly enhance risk stratification, enabling timely interventions and
ensuring that high-risk patients receive appropriate care, which may ultimately reduce
readmissions and improve patient outcomes [31,32]. Our study further underscores the
importance of follow-up ECGs in the ED, as they capture dynamic changes in a patient’s
condition, providing a more accurate risk stratification. This sequential approach empha-
sizes the benefits of repeated ECG assessments in predicting adverse outcomes and guiding
clinical decision-making more effectively.

Al-enhanced ECG analysis has advanced significantly, with deep learning-based mod-
els and large language models (LLMs) demonstrating effectiveness in detecting cardiac
conditions, predicting adverse events, and improving clinical decision-making [33,34].
However, the clinical adoption of these models is often limited by the need for extensive
computational resources and structured multimodal datasets. Our Al-enabled ECG model
relies exclusively on ECG waveform analysis, eliminating the need for additional clini-
cal inputs while maintaining strong predictive performance. This approach offers key
advantages, including real-time applicability and dynamic risk stratification, making it
a potentially valuable tool for ED decision support. By providing timely and accurate
risk assessment, our model has the potential to optimize ED workflows, improve patient
disposition, and enhance clinical outcomes.

This study has several limitations that should be acknowledged. Firstly, the data were
derived from a single medical center, which may limit the generalizability of our findings to
other settings with different patient populations. Secondly, the study included patients who
underwent two ECGs during their ED visit. These patients generally presented with car-
diopulmonary symptoms, making them a higher-risk group that may not fully represent the
broader ED population. This selection bias could have influenced the study’s outcomes and
may limit the applicability of the findings to lower-risk patients. Thirdly, the retrospective
design inherently carries the risk of biases related to data collection, missing information,
and the inability to control for all confounding variables. Although we attempted to control
the known confounders, there may be unmeasured variables that influenced the results. In
particular, because mortality was captured only within our hospital records, some out-of-
system deaths may have been missed and introduced bias. Additionally, the study did not
evaluate the cost-effectiveness or feasibility of implementing Al-enabled ECG technology
on a large scale in routine ED practice. Finally, while we included an analysis of ECG
features and patient characteristics to assess model interpretability, future work should
evaluate their clinical utility in prospective, multi-center settings.
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5. Conclusions

The Al-enabled follow-up ECG demonstrated superior predictive accuracy compared
to the initial ECG, highlighting the potential value of performing a follow-up ECG to
enhance risk stratification for ED patients. The follow-up ECG, conducted prior to dis-
charge, may provide a more accurate assessment of short-term mortality risk, particularly
for those initially deemed low risk. Patients being considered for discharge from the ED
could benefit from an additional ECG to support a more precise evaluation of their risk
profile. Although Al-enabled ECG interpretation alone may not replace comprehensive
risk assessment, it offers a practical tool to support clinical judgment, particularly in the
dynamic ED environment, by supporting safer discharge decisions. Future research should
aim to validate these findings across multiple centers, using prospective study designs
and assessing the cost-effectiveness and real-world implementation of Al-enabled ECGs in
diverse clinical settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/diagnostics15151874/s1, Figure S1: Visual interpretation of Al-
enabled ECG mortality risk prediction.
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Appendix A

Table Al. Characteristics of patients classified as low-risk by Al-enabled ECG at ED admission.

Variables Low-Low Low-Medium Low-High p-Value
Number, 1 (%) 7527 (91.6%) 650 (8%) 33 (0.4%) <0.001
Age, mean + SD 59.73 + 15.96 70.49 + 14.69 61.15 £+ 18.86 <0.001
Gender, 1 (%) <0.001

Male 4228 (56.2%) 290 (44.6%) 17 (51.5%)

Female 3299 (43.8%) 360 (55.4%) 16 (48.5%)
BMI, mean + SD 25.12 £ 4.02 24.30 £ 4.23 24.18 £ 4.33 <0.001
Triage level, n (%) <0.001

1 105 (1.4%) 21 (3.2%) 0(0.0%)

2 2555 (33.9%) 264 (40.6%) 9 (27.3%)

3 4592 (61.0%) 343 (52.8%) 22 (66.7%)

4 274 (3.6%) 22 (3.4%) 2 (6.1%)

5 1 (0.0%) 0 (0.0%) 0 (0.0%)
SBP, mean + SD 143.23 + 26.19 143.49 + 28.29 135.94 + 30.38 0.296
DBP, mean + SD 81.02 £+ 15.91 77.80 £+ 16.38 75.29 £ 16.65 <0.001
PULSE, mean + SD 81.11 £19.44 85.46 £ 26.52 94.30 4 35.42 <0.001
SPO,, mean + SD 98.41 4+ 10.30 97.82 + 3.76 98.36 4+ 2.18 0.337
1st ECG mortality risk score, mean + SD 57.81 £ 22.07 75.68 + 13.24 67.97 £20.81 <0.001
2nd ECG mortality risk score, mean £ SD 55.63 4 22.20 90.08 4= 2.58 98.03 4= 1.07 <0.001
Admission to discharge (hr.), mean &+ SD 523 +£4.23 6.02 + 5.01 5.77 £ 3.85 <0.001
Events [all-cause mortality within 90 days], n (%) <0.001

Alive 6673 (99.8%) 593 (99.0%) 26 (92.9%)

Death 16 (0.2%) 6 (1.0%) 2 (7.1%)

Table A2. Characteristics of patients classified as medium-risk by Al-enabled ECG at ED Admission.
. . Medium- . .
Variables Medium-Low Medi Medium-High p-Value
edium

Number, 1 (%) 1223 (46.1%) 1310 (49.3%) 122 (4.6%) <0.001
Age, mean + SD 67.14 +15.89 7543 £13.20 74.20 £13.91 <0.001
Gender, n (%) 0.003

Male 560 (45.8%) 686 (52.4%) 56 (45.9%)

Female 663 (54.2%) 624 (47.6%) 66 (54.1%)
BMI, mean + SD 2453 £4.13 2429 £4.01 24.26 £ 4.56 0.369
Triage level, n (%) 0.109

1 52 (4.3%) 68 (5.2%) 12 (9.8%)

2 525 (42.9%) 598 (45.6%) 53 (43.4%)

3 612 (50.0%) 609 (46.5%) 54 (44.3%)

4 34 (2.8%) 35 (2.7%) 3 (2.5%)

5 0 (0.0%) 0 (0.0%) 0 (0.0%)
SBP, mean + SD 142.53 £ 28.53 141.23 £ 29.05 137.85 £ 30.74 0.190
DBP, mean + SD 79.25 £17.85 75.35 £17.81 75.19 £18.33 <0.001
PULSE, mean =+ SD 94.56 + 30.66 86.87 £ 24.39 85.13 £ 22.96 <0.001
SPO,, mean + SD 97.89 £ 3.18 98.48 + 36.34 97.81 £2.81 0.839
1st ECG mortality risk score, mean & SD 90.81 +2.79 91.79 4 2.68 93.05 4 2.78 <0.001
2nd ECG mortality risk score, mean & SD 7220 £ 1592 91.20 £ 2.58 97.78 £ 0.90 <0.001
Admission to discharge (hr.), mean & SD 5.54 +4.11 5.94 4+ 4.62 6.61 £ 5.27 0.009
Events [all-cause mortality within 90 days], n (%) <0.001

Alive 1102 (99.5%) 1183 (97.6%) 110 (94.8%)

Death 6 (0.5%) 29 (2.4%) 6 (5.2%)
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Table A3. Characteristics of patients classified as high-risk by Al-enabled ECG at ED admission.

Variables High-Low High-Medium High-High p-Value
Number, n (%) 187 (29.1%) 269 (41.8%) 187 (29.1%) <0.001
Age, mean + SD 62.45 + 16.87 72.24 + 15.46 74.26 +14.70 <0.001
Gender, n (%) 0.229

Male 88 (47.1%) 143 (53.2%) 104 (55.6%)

Female 99 (52.9%) 126 (46.8%) 83 (44.4%)
BMI, mean + SD 24.56 + 4.10 23.85 + 4.81 23.87 + 4.49 0.252
Triage level, n (%) 0.604

1 21 (11.2%) 27 (10.0%) 18 (9.6%)

2 105 (56.1%) 149 (55.4%) 101 (54.0%)

3 57 (30.5%) 85 (31.6%) 67 (35.8%)

4 4 (2.1%) 8 (3.0%) 1 (0.5%)

5 0 (0.0%) 0 (0.0%) 0 (0.0%)
SBP, mean =+ SD 135.03 + 27.89 134.07 + 29.09 127.95 + 27.97 0.040
DBP, mean + SD 82.14 4+ 18.93 7745 +17.74 74.63 £ 20.66 0.001
PULSE, mean =+ SD 123.79 + 42.57 105.66 + 33.65 96.10 + 30.47 <0.001
SPO,, mean + SD 98.27 +2.21 97.21 + 3.94 97.48 + 2.85 0.002
1st ECG mortality risk score, mean 4 SD 98.14 £ 1.07 97.93 = 1.00 98.24 £ 1.02 0.005
2nd ECG mortality risk score, mean £ SD 68.69 £ 18.77 92.74 £2.72 98.27 +1.03 <0.001
Admission to discharge (hr.), mean & SD 6.02 +4.53 6.61 £ 5.78 6.60 + 4.81 0.427
Events [all-cause mortality within 90 days], n (%) <0.001

Alive 175 (100.0%) 241 (96.8%) 145 (90.6%)

Death 0 (0.0%) 8 (3.2%) 15 (9.4%)
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